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Abstract

This master thesis studies dimensional reductions of the Kähler–Yang–Mills equations over
compact Kähler manifolds by imposing some type of SU(2)-equivariance, to obtain the gravita-
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Introduction

This master thesis is devoted to the study of dimensional reductions of the Kähler–Yang–Mills
equations. These are a recent addition to the class of gauge-theoretic equations in differential
geometry introduced by Álvarez-Cónsul, Garćıa-Fernández and Garćıa-Prada (see [1] and [13]).
We will be mostly concerned about compact Kähler manifolds and holomorphic vector bundles
over them. We now briefly recall some historical facts about the advancements in this area of
research.

Vector bundles are central objects in both algebraic and differential geometry. A first re-
sult concerning the classification of vector bundles of rank 1 over algebraic varieties is the
Abel–Jacobi theorem, although stated in the equivalent language of divisors. A topological
classification of complex line bundles is entirely possible in terms of the first Chern class. How-
ever, this fails for higher ranks. A relevant result which solves this problem in a particular case
is Grothendieck’s decomposition theorem: every holomorphic vector bundle over the complex
projective line P1 is equivalent to a direct sum of line bundles, all of different degree (first Chern
class). Atiyah [5] extended the classification to genus 1 (algebraic elliptic curves).

A new tool for studying vector bundles developed in the 1960’s with the appearance of
Mumford’s Geometric Invariant Theory and the notion of stability [26]. This allowed for the
construction of quotients in the context of algebraic geometry, and this is convenient for the
study of vector bundles as we are often interested in equivalence classes of these objects. With
this concept of stability, Narasimhan and Seshadri proved in 1965 [27] a remarkable theorem,
stating that stable holomorphic vector bundles over a Riemann surface are in one-to-one cor-
respondence with projective unitary representations of the fundamental group of the surface
(nowadays called PSU(n)-character variety).

A few years later, Atiyah and Bott introduced novel ideas from Yang–Mills theory, originally
a field-theoretic model in particle physics, to algebraic and differential geometry [6]. Building
on these ideas, Donaldson gave a new proof of the Narasimhan–Seshadri theorem in gauge-
theoretic terms: an indecomposable vector bundle over a Riemann surface is stable if and only
if it admits a projectively flat unitary connection.

The Hermitian–Yang–Mills equations provide a generalization of the projectively flat con-
dition for vector bundles on higher dimensional Kähler manifolds. These equations were al-
ready being studied by Kobayashi and Lübke, who independently proved in 1983 [24] that
holomorphic vector bundles over compact Kähler manifolds of arbitrary dimension admitting
Hermitian–Yang–Mills connections are necessarily stable in the sense of Mumford. What today
is known as the Hitchin–Kobayashi correspondence was established as a conjecture in the late
70s independently by Hitchin [18] and Kobayashi [21]. What Kobayashi and Lübke proved was
one of the implications of the correspondence.

In 1985, Donaldson proved a partial converse for the case of algebraic surfaces [9]. Shortly
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6 Introduction

after, Uhlenbeck and Yau gave a proof for general compact Kähler manifolds of arbitrary di-
mension [32], followed by a proof by Donaldson for projective algebraic manifolds [10].

Another relevant equation is that of having constant scalar curvature for a Kähler metric
on a compact complex manifold. This is a fourth order nonlinear partial differential equation.
Fujiki [12] first gave an interpretation of the Riemannian constant scalar curvature condition in
terms of a symplectic moment map, and Donaldson generalized it [11] to the Hermitian scalar
curvature in almost Kähler manifolds. These results were already known to Quillen in the case
of Riemann surfaces.

The Kähler–Yang–Mills equations are related to both the Hermitian–Yang–Mills and
constant scalar curvature equations. Consider a compact complex manifold M and a holomor-
phic vector bundle E over M . The Kähler–Yang–Mills equations for a Hermitian metric h on
E and Kähler metric ω on M read as

iΛωFh = λIdE,

Sω − αΛω trFh ∧ Fh = c,

for constants λ, c. These were introduced in Garćıa-Fernández’s PhD thesis [13] (see also [1]).
Here α is called the coupling parameter. A relevant insight is that these equations also appear
as the vanishing moment map condition for a symplectic action on a particular moduli space.
It was shown by Álvarez-Cónsul, Garćıa-Fernández and Garćıa-Prada [1] that bundles admit-
ting Hermitian–Yang–Mills metrics over manifolds M with finite automorphism group and a
constant scalar curvature Kähler metric admit solutions to the Kähler–Yang–Mills equations
by means of a deformation procedure, for small values of the coupling parameter.

The present work studies dimensional reductions of the Kähler–Yang–Mills equations. More
concretely, we assume the base space to be of the form M = X × P1, where P1 denotes the
complex projective line (the Riemann sphere), which is isomorphic to SU(2)/U(1), therefore
allowing a natural action of SU(2). We assume a particular SU(2)-invariant structure on the
vector bundle E over X×P1 involving two vector bundles E1, E2 and a map φ between them, a
structure called holomorphic triple. This setting allows for a search of solutions to the Kähler–
Yang–Mills equations which are invariant under this SU(2)-action. This work arrives at what
we call the gravitational vortex equations.

Álvarez-Cónsul, Garćıa-Fernández and Garćıa-Prada had already studied this type of dimen-
sional reduction of the Kähler–Yang–Mills equations by considering line bundles over Riemann
surfaces, obtaining the Abelian gravitational vortex equation. This builds upon a series of
results concerning the vortex equations, studied by Garćıa-Prada in [15]. The vortex equations
had been introduced by Landau and Ginzburg [23] while studying superconductivity and they
were obtained by Jaffe and Taubes [20] for R2 and by Witten for the hyperbolic plane through
a similar process of dimensional reduction from the Yang–Mills equations.

In this work we focus more narrowly on the gravitational vortex equations on Riemann
surfaces with holomorphic triples (E1, E2, φ) of higher rank. In that case, the gravitational
vortex equations for two Hermitian metrics h1,h2 and a Kähler metric ω read as

iΛωFh1 + 1
4
φ ◦ φ∗ = 2πτ IdE1 ,

iΛωFh2 − 1
4
φ∗ ◦ φ = 2πτ ′IdE2 ,

Sω − 16πiα
σ

Λω trFh2
−αiΛω

[
tr(Fh1 ◦ φ ◦ φ∗)− tr(Fh2 ◦ φ∗ ◦ φ) + tr(∂2,1φ ∧ ∂1,2φ

∗)
]

= C,
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in terms of some constant C, the coupling parameter α and some symmetry-breaking parame-
ters. Holomorphic triples turn out to be key in the study of our equations, as had already been
shown by Bradlow and Garćıa-Prada [7] and together with Gothen [8] while studying the vortex
equations on triples. A notion of stability for triples characterizes the existence of solutions
to the vortex equations, and being the latter a subset of our gravitational vortex equations
they provide necessary conditions for the existence of solutions. Previous results [7, 8] showed
that the moduli spaces of stable triples over compact Riemann surfaces are quasi-projective
algebraic varieties and computed the dimension, helping understand the space of solutions to
the coupled vortex equations. Fixing arbitrary ranks and degrees of the triples, Pasotti and
Prantil studied these moduli spaces on surfaces of genus one [30] and zero [29], and in this
direction, To’s doctoral dissertation [31] gave specific examples of these moduli spaces over the
Riemann sphere.

Inspired by the existence results for the Abelian gravitational vortex equations involving
a notion of GIT stability on the space of triples [2, 4, 14], this work proposes a conjecture
characterizing the existence of solution to the gravitational vortex equations for genus zero.

Conjecture. Let P1 be the projective line and T = (E1, E2, φ) a holomorphic triple over P1.
The following are equivalent.

1. There exists a solution to the gravitational vortex equations on (P1, T ).

2. The triple T is τ -polystable and its equivalence class is furthermore GIT-polystable for the
action of SL(2,C) on the moduli space of stable triples M.

This work constitutes a first step to the study of the gravitational vortex equations, taking
the initial steps towards a deeper understanding of the dimensional reductions of the Kähler–
Yang–Mills equations. Such a project will be the main topic of the author’s prospective PhD
dissertation.

Outline

Chapter 1 introduces the Kähler–Yang–Mills equations describing in some detail the interpre-
tation of these in terms of a moment map. Several concepts related to standard gauge theory
are introduced, such as the space of connections, the gauge group and the corresponding mod-
uli space, together with some links between connections and holomorphic structures on vector
bundles.

Chapter 2 contains the main result of this work, namely a dimensional reduction that
generalizes that of [2], extending to the case of arbitrary dimension of the base space and ar-
bitrary ranks of two vector bundles over the base space. The resulting equations are coined
gravitational vortex equations. These equations can be then reduced to simpler situations. In
particular, we consider the case of line bundles over arbitrary compact Kähler manifolds and
vector bundles of arbitrary rank over Riemann surfaces. The combination of both situations
yields the Abelian gravitational vortex equations, for which we recall previous existence results.

Chapter 3 introduces the necessary notions to understand the existence results such as the
Hitchin–Kobayashi correspondence and Mumford’s stability of vector bundles. We introduce
the notion of holomorphic triple and stability, recalling prior results for moduli spaces. Section
3.4 states a conjecture regarding the existence of solutions of the gravitational vortex equations
over the complex projective line and higher rank vector bundles in terms of a notion of GIT
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stability, which is explained at the beginning of the section. This conjecture will become a
primary objective of the author’s doctoral dissertation. We end the document by recalling
some examples of moduli spaces of stable triples over the projective line in order to give a
precise feeling of how this objects look like and how a GIT action might be implemented.



Chapter 1

Kähler–Yang–Mills equations

This chapter introduces the Kähler–Yang–Mills equations, the central object of study of this
work. These equations were introduced by Álvarez-Cónsul, Garćıa-Fernández and Garćıa-Prada
in [1], and have been studied for some time. The Kähler–Yang–Mills equations couple a
Kähler metric on a compact complex manifold with a Hermitian metric on a complex vector
bundle over the complex manifold. These equations they can be formulated in greater generality
in principal bundles, although this work focuses on the linear version. The Kähler–Yang–Mills
equations are related to the Hermitian–Yang–Mills and the constant scalar curvature Kähler
metric equations. We will often refer to the equations simply as KYM.

Let M be a compact complex manifold and consider a holomorphic vector bundle E over
M of rank r. In order to write the equations we introduce some notation which will be mainly
following Atiyah–Bott [6]. Let H be an arbitrary Hermitian metric on E. Consider the Killing
form

tr : u(r)× u(r)→ R.

This is a symmetric bilinear form which is furthermore invariant under the adjoint action of
U(r) (actually under the adjoint action of the full GL(r,C)), and therefore it defines a bilinear
pairing on EndE. This can be naturally extended to give a pairing on the space of EndE-valued
differential forms

Ωp(EndE)× Ωq(EndE)→ Ωp+q

which will be denoted by tr ap ∧ aq for ap ∈ Ωp(EndE) and aq ∈ Ωq(EndE). The Kähler–Yang–
Mills equations for a Kähler metric (we will abuse notation and refer to the associated Kähler
form ω instead) and a Hermitian metric H on E read as

iΛωFH = λIdE,

Sω − αΛ2
ω trFH ∧ FH = c. (1.1)

Here, Λω is the adjoint of the Lefschetz operator L : η 7→ ω ∧ η, which coincides with the
contraction Λωη = η y ω#, where ω# is the contravariant counterpart of ω induced by sym-
plectic duality. FH is the curvature of the Chern connection determined by the Hermitian
metric H and the holomorphic structure of E, Sω is the scalar curvature of the Kähler metric
and λ and c are two constants that are completely determined by the topology of E and the
cohomology class determined by ω. We refer to [19, 22] as basic sources for the concepts of
complex geometry appearing here. The first line in (1.1) constitutes the Hermite–Einstein or
Hermitian–Yang–Mills equations.

It is worth noting that for Riemann surfaces M = Σ the two equations decouple due to the
vanishing of the quadratic term FH ∧ FH , and the problem reduces to a combination of the
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10 CHAPTER 1. KÄHLER–YANG–MILLS EQUATIONS

Uniformization Theorem for Riemann surfaces and the Narasimhan–Seshadri theorem. The
study of the KYM equations is therefore more interesting in the higher-dimensional case. In [2]
the authors analyzed the case when M is the product of a Riemann surface with the complex
projective line Σ× P1, and a particular rank-two holomorphic vector bundle which is equivari-
ant under a natural SU(2)-action. This allowed for the search of SU(2)-invariant solutions of
the KYM equations, and this was equivalent to finding solutions of the so-called gravitational
vortex equations over the Riemann surface and a line bundle over it.

1.1 Moment map and the Hermitian–Yang–Mills equa-

tions

Both the constant scalar curvature Kähler and the Hermitian–Yang–Mills equations have been
interpreted in terms of vanishing moment map conditions. This notion arises in symplectic ge-
ometry and some of its features will be outlined here, but we refer to [25] for details. Throughout
the next sections we will introduce moment map interpretations for the Hermitian–Yang–Mills
and constant scalar curvature Kähler metric in order to construct a moment map for the Kähler–
Yang–Mills equations.

Consider a compact Lie group G with Lie algebra g. Let G act by symplectomorphisms on
a symplectic manifold (M,ω). There is an induced Lie algebra homomorphism g → X (M),
mapping each element ξ ∈ g to the vector field defined byXξ(p) = d

dt

∣∣
t=0

exp(tξ)·p. The action is
called Hamiltonian if each such vector field Xξ is Hamiltonian, i.e. if to each ξ ∈ g we can assign
a differentiable function Hξ and furthermore this assignment is a Lie algebra homomorphism,
where C∞(M) is endowed with the Poisson bracket with respect to the symplectic form ω. In
this context, a moment map for the action is a differentiable map µ : M → g∗ satisfying

Hξ(p) = 〈µ(p), ξ〉,

where 〈·, ·〉 denotes the pairing between the Lie algebra and its dual g∗, and that is furthemore
equivariant under the coadjoint action of G on g∗.

Moment maps provide a way of constructing symplectic manifolds from a given one endowed
with a Hamiltonian G-action. We consider the level set µ−1(0) ⊂ M . Due to the equivariance
of the moment map, µ−1(0) is invariant under the action of G, since 0 ∈ g∗ is certainly a fixed
point of the coadjoint action. If 0 is a regular value of the moment map, and G acts freely and
properly on µ−1(0) then not only is µ−1(0)/G a manifold but it admits a natural symplectic
structure. The quotient has dimension dim(µ−1(0)/G) = dimM − 2 dimG. This is often called
the Marsden–Weinstein quotient. Further details of this construction can be found in Section
5.4. of [25].

Fujiki [12] and Donaldson [11] interpreted the scalar curvature equation in terms of a moment
map. This was also known to Quillen in the case of Riemann surfaces. The Hermitian–Yang–
Mills equations were also interpreted in these symplectic terms first by Atiyah and Bott [6]
over Riemann surfaces and by Donaldson [9] in higher dimensions. We will briefly recall the
basics of these constructions and provide a moment map interpretation for the KYM equations.

We start by giving a moment map interpretation of the Hermitian–Yang–Mills equations.
Let (M,ω) be a symplectic manifold. Let E be a differentiable complex vector bundle over M
together with an Hermitian metric H, with rankE = r. We consider the space A of unitary
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connections on E, which is an affine space modelled on Ω1(adEH). Here EH denotes the prin-
cipal bundle of unitary frames associated to the Hermitian vector bundle (E,H) and adEH is
the adjoint bundle, to be identified with skew-Hermitian endomorphisms of (E,H).

Let G be the unitary gauge group of EH , i.e. the set of U(r)-equivariant diffeomorphisms of
EH covering the identity over M . The unitary gauge group acts upon the space of connections
from the left in a natural manner. One way to state this action requires seeing the connections
as U(r)-equivariant splittings of the sequence

0→ V EH ↪→ TEH → π∗TM → 0,

i.e. as U(r)-equivariant mappings A : TEH → V EH . The action of the gauge group is from
the left via the pushforward g · A := g∗ ◦ A ◦ g−1

∗ . We can provide A with a symplectic form
defined by

ωA(a, b) =

∫
M

tr a ∧ b ∧ ωn−1

(n− 1)!

for a, b ∈ TAA ' Ω1(adEH), where tr · ∧ · denotes the pairing Ωp(adEH)× Ωq(adEH)→ Ωp+q.
This 2-form is a symplectic form and the main result to be recalled is that the gauge group
acts in a Hamiltonian fashion on A, the moment map being given by µG : A → LieG∗

〈µG(A), ζ〉 =

∫
M

tr ζ ∧ (iΛωFA − λIdE)
ωn

n!
, (1.2)

for ζ ∈ LieG ' Ω0(adHE) and for a fixed but arbitrary λ ∈ R.

If the base space M is furthermore a Kähler manifold there is a distinguished subspace of
connections A1,1

J ⊂ A satisfying FA ∈ Ω1,1(adEH) where the complex structure J in M allows
for the (p, q)-type decomposition. In this context, a connection A is called Hermitian–Yang–
Mills if it satisfies

iΛωFA = λIdE,

and it is easy to prove that λ depends only on the cohomology class [ω] and on the topology of
the bundle:

degω E =
i

2π

∫
M

tr ΛωFA
ωn

n!
=

1

2π

∫
M

λ tr IdE = λ
rankE VolωM

2π
.

The vanishing locus of the moment map corresponds precisely to the set of solutions to the
Hermitian–Yang–Mills equations. The moduli space µ−1

G (0)/G of gauge-equivalent solutions
is then an infinite-dimensional version of a Marsden–Weinstein quotient. The existence of a
complex structure on A1,1

J away from its singularities then implies that the moduli space of
Hermitian–Yang–Mills connections is (away from singularities) a Kähler quotient, once it is
shown that this complex structure is compatible with ωA.

1.2 Moment map and constant scalar curvature

Let (M,ω) be a compact symplectic manifold and let J be the space of almost complex struc-
tures compatible with ω. Let H be the group of Hamiltonian symplectomorphisms of (M,ω).
We can define a symplectic form for J in the following way: let J ∈ J . The tangent space
TJJ is composed of vector bundle endomorphisms Φ : TM → TM symmetric with respect to
the metric gJ = ω(·, J ·) satisfying Φ ◦ J = −J ◦ Φ. For such Φ,Ψ ∈ TJJ we define

ωJ (Φ,Ψ) =
1

2

∫
M

tr(J ◦ Φ ◦Ψ)
ωn

n!
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This can be shown to be a symplectic 2-form and the group of Hamiltonian symplectomor-
phisms acts upon J from the left in a Hamiltonian fashion via h · J = h∗ ◦ J ◦ h−1

∗ . The space
J admits itself a complex structure given by Φ ∈ TJJ 7→ J ◦ Φ ∈ TJJ , which is furthermore
compatible with ωJ , turning J into an infinite-dimensional Kähler manifold.

Any almost complex structure J ∈ J compatible with ω induces a Hermitian metric on
T ∗M . There is a unique unitary connection on T ∗M whose (0, 1)-component coincides with
the standard Dolbeault operator ∂J : Ωp,q

J → Ωp,q+1
J . The Hermitian scalar curvature SJ is the

real function on M defined by

SJ
ωn

n!
= 2ρJ ∧

ωn−1

(n− 1)!
.

Here ρJ is the real 2-form defined as −i times the induced curvature in the determinant bundle
ΛnT ∗M . This SJ is defined so that for integrable almost complex structures J it coincides with
the Riemannian scalar curvature induced by the Riemannian metric ω(·, J ·). Donaldson proved
[11] that the action of H on J is Hamiltonian with moment map given by

〈µH(J), ηφ〉 = −
∫
M

φSJ
ωn

n!
,

where ηφ ∈ LieH is the Hamiltonian vector field generated by φ ∈ C∞0 (M), the zero-average
Hamiltonian functions that determines the field. The vanishing locus of the moment map
coincides precisely with the almost complex structures J such that the scalar curvature is
constant SJ = c.

1.3 Moment map intrepretation of the Kähler–Yang–

Mills equations

Consider a compact symplectic manifold (M,ω) and (E,H) a Hermitian vector bundle over
M . It is possible to extend the gauge group when the base space is endowed with a symplectic
structure. This extension of Lie groups is given by

1→ G i
↪→ G̃

p
� H → 1. (1.3)

Here G̃ is defined to be the set of U(r)-equivariant diffeomorphisms of EH covering Hamiltonian
symplectomorphisms of the base space, and i is the natural inclusion G ⊂ G̃. It can be shown
that p is surjective by taking a unitary connection on E and horizontally lifting a Hamiltonian
vector field; the flow that it generates will give a suitable element of G̃.

Consider now the affine space A of connections on E and J the space of almost complex
structures compatible with ω. We now define a family of symplectic structures in J × A
parametrized by α ∈ R as

ωα = ωJ + 4αωA.

The extended gauge group G̃ acts upon J ×A from the left via

g · (J,A) = (p(g) · J, g · A)

where p(g) ∈ H acts upon J as defined above. The main result to be recalled in this section from
[1] is that this action is Hamiltonian with respect to the symplectic form ωα. The definition of
the moment map requires the construction of an assignment of a linear map θA : Lie(AutEH)→
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LieG to each connection A ∈ A yielding a linear splitting of the so-called Atiyah short exact
sequence

0→ LieG → Lie(AutEH)→ Lie(DiffM)→ 0.

For ζ ∈ Lie G̃, θA(ζ) is an element of LieG ' Ω0(adEH) and p(ζ) = ηφ is an element of
LieH ' C∞0 (M), where φ is the Hamiltonian function generating the vector field ηφ. There is
yet another map θ⊥A : LieH → G̃ uniquely defined by IdG̃ = i ◦ θA + θ⊥A ◦ p. In this context, the

equivariant moment map is given by its pairing with an arbitrary element ζ ∈ G̃:

〈µα(J,A), ζ〉 = −4α

∫
M

tr θA(ζ) ∧ (iΛωFA − λIdE)
ωn

n!

−
∫
M

φ
{
SJ − αΛ2

ω trFA ∧ FA + 4αΛω trFA ∧ λIdE
} ωn
n!
.

There is a formally integrable complex structure on J ×A given by

IJ,A(J ′, a) = (J ◦ J ′,−a ◦ J)

for J ′ ∈ TJJ , a ∈ TAA ' Ω1(adEH), and for positive α, it is compatible with the family of
symplectic structures given above. Now we define the subspace P ⊂ J ×A consisting of pairs
(J,A) where J is an integrable almost complex structure and A is a connection on E with
curvature of type (1, 1) with respect to J . This is a G̃-invariant and Kählerian subspace. A
pair (J,A) ∈ P is said to satisfy the Kähler–Yang–Mills equations if the following hold:

iΛωFA = λIdE,

SJ − αΛ2
ω trFA ∧ FA = c.

Here λ, c ∈ R. Now we can prove that the vanishing locus of the moment map (restricted to
P) coincides with the set of solutions of the Kähler–Yang–Mills equations. Assume (J,A) ∈
µ−1
α (0) ∩ P . Take any arbitrary element η ∈ H and consider θ⊥A(η) ∈ Lie G̃. Pair this element

with µα(J,A) = 0 to get

0 = −4α

∫
M

tr θAθ
⊥
Aη ∧ (iΛωFA − λIdE)

ωn

n!

−
∫
M

φ(SJ − αΛ2
ω trFA ∧ FA + 4αΛω trFA ∧ λIdE)

ωn

n!

where p(θ⊥Aη) = ηφ ∈ H. This implies in particular that the term in brackets within the second
integral must be constant

SJ − αΛ2
ω trFA ∧ FA + 4αΛω trFA ∧ λIdE = c′,

but evaluating again at an arbitrary element ζ ∈ Lie G̃ we conclude that iΛωFA = λIdE, so in
particular

SJ − αΛ2
ω trFA ∧ FA = c′ − 4α|λ|2 = c.

This shows that the pair (J,A) satisfies the Kähler–Yang–Mills equations. The converse easily
follows from the expression for the moment map. In Chapter 2 we analyze the Kähler–Yang–
Mills equations when a certain SU(2)-symmetry is imposed. The equations will reduce to new
systems of equations depending on the the dimensionality of the base manifold and the rank of
the vector bundles involved.
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Chapter 2

Dimensional reduction of the
Kähler–Yang–Mills equations

In this chapter we study dimensional reductions of the Kähler–Yang–Mills equations when
imposing a particular SU(2)-equivariance. We do this by taking a base space of the form
X × P1 and a SU(2)-equivariant vector bundle over it. For the rest of the document we will
be analyzing the equations in the context of holomorphic vector bundles, with the unknowns
being the Hermitian metric and the Kähler metric, with a fixed complex structure on the
base manifold. This is equivalent to the setting in Chapter 1, where we fixed the symplectic
structure and the Hermitian metric and let the connection A and the complex structure J be
the unknowns: a gauge transformation links the two points of view (see [15]).

2.1 Dimensional reduction and holomorphic triples

Consider a vector bundle E over a base manifold M and a compact Lie group G. We say that
E is a G-equivariant vector bundle if there is an action of G on M that lifts to a fiberwise
linear action on E. In the C∞ setting, both actions are required to be differentiable, while if
E is a holomorphic vector bundle over a complex manifold the action of G is required to be by
biholomorphisms. In this case one usually considers the action of the complexification GC of
G. A G-equivariant vector bundle yields a commutative diagram of the form

E ×G E

M ×G M.

π×IdG π

Let us consider a compact complex manifold X, although some of what follows holds when
X is simply C∞. Let us denote M = X × P1. Consider the natural projections onto the first
and second factor p : M → X and q : M → P1. There is a natural action of the Lie group
SU(2) on M , acting trivially on X and in the natural way on P1 ' SU(2)/U(1). We consider
now the differentiable SU(2)-equivariant vector bundles over X × P1. For the differentiable
category, SU(2)-equivariant bundles are catalogued by the following result:

Proposition 2.1 (Prop. 3.1 in [16]). Every differentiable SU(2)-equivariant vector bundle over
X × P1 can be equivariantly decomposed as

E =
⊕
i

p∗Ei ⊗ q∗L⊗ni ,

where Ei is a differentiable vector bundle over X, L is the line bundle over P1 with Chern class
1 and all ni ∈ Z are different.

15
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We will focus our attention to a particular subset of these equivariant vector bundles over
X × P1, those with an underlying C∞ structure given by

E = p∗E1 ⊕ (p∗E2 ⊗ q∗L⊗2). (2.1)

Considering now the case when X is a compact complex manifold, we define the closely related
notion of holomorphic triple over X.

Definition 2.2. A holomorphic triple (E1, E2, φ) over X consists of two holomorphic vector
bundles E1 and E2 together with a sheaf homomorphism between them φ : E2 → E1.

For the holomorphic case, there is a one-to-one correspondence between SU(2)-equivariant
holomorphic vector bundles over M = X × P1 with underlying C∞ structure as in (2.1)
with holomorphic triples over X. This is because after fixing a SU(2)-invariant section η
in Ω0,1(OP1(−2)), holomorphic extensions over X × P1 of the form

0→ p∗E1 → E → p∗E2 ⊗ q∗OP1(2)→ 0. (2.2)

are determined by a second fundamental form of the type β = p∗φ ⊗ q∗η. Here OP1(k) is
the holomorphic line bundle over P1 with Chern class k. The correspondence is easily seen as
follows. Extensions as above are parametrized by the sheaf cohomology group

H1(X × P1, p∗E1 ⊗ p∗E∗2 ⊗ q∗OP1(−2)) ' H0(X,E1 ⊗ E∗2)⊗H1(P1,OP1(−2))

' H0(X,Hom(E2, E1))

where we have made use of the Künneth formula and Serre duality, by which H1(P1,OP1(−2)) '
H0(P1,OP1(0))∗ ' C. We conclude that holomorphic triples E2

φ→ E1 are in bijection with
extensions of the form (2.2). These holomorphic triples will allow us to analyze the dimensional
reduction of the Kähler–Yang–Mills equations in the subsequent sections.

2.2 Gravitational vortex equations

The aim of this section is to analyze the dimensional reduction of the Kähler–Yang–Mills
equations (1.1) when the base space is of the form M = X×P1, where X is a Kähler manifold,
and we require the solution of the Kähler–Yang–Mills equations (H,Ω) to be SU(2)-invariant.
This implies that the Kähler form is given by

Ωσ = p∗ω + σq∗ωP1 ,

where p, q are the projections of X × P1 onto the first and second factor respectively, and ωP1

is the Kähler form induced by the Fubini–Study metric normalized to satisfy
∫
P1 ωP1 = 1. Here

σ > 0 is a real positive parameter.

Let us assume that we have a SU(2)-invariant solution (H,Ωσ) of the Kähler–Yang–Mills
equations. Since SU(2) acts with different weights on each term of p∗E1 ⊕ (p∗E2 ⊗ q∗OP1(2)),
the Hermitian metric H must decompose as

H = H1 ⊕H2 = (p∗h1)⊕ (p∗h2 ⊗ q∗h′2),

where h1 and h2 are Hermitian metrics on E1 and E2 respectively and h′2 is a SU(2)-invariant
Hermitian metric in OP1(2), which can be assumed to be

h′2 = C
dz ⊗ dz

(1 + |z|2)2
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in homogenous coordinates, for any arbitrary nonzero factor C. In this context, we can relate the
Chern connection and curvature determined by (E,H) to the Chern connections and curvatures
of each Hermitian subbundle (p∗E1, H1), (p∗E2 ⊗ OP1(2), H2). We refer to Section 1.6. of
Kobayashi’s book [22] for a detailed treatment of this computations. We obtain that the Chern
connection induced by the Hermitian metric H is then given by

DH =

(
D1 β
−β∗ D2

)
. (2.3)

Here D1 is the Chern connection of H1 = p∗h1, D2 is the Chern connection of H2 = p∗h2⊗q∗h′2,
β is the so-called second fundamental form and β∗ is the corresponding adjoint map with respect
to the Hermitian metrics H1, H2. After fixing a SU(2)-invariant element η ∈ Ω0,1(P1,OP1(−2))
(which is unique up to scale factor), the second fundamental form is given by β = p∗φ ⊗ q∗η,
where φ is a holomorphic section of Hom(E2, E1). For the choice of η, any multiple of dz

(1+|z|2)2
⊗

dz is a viable candidate. We begin by calculating the trace term in the second of the KYM
equations (1.1). The curvature reads as

FH =

(
FH1 − β ∧ β∗ D′β
−D′′β∗ FH2 − β∗ ∧ β

)
, (2.4)

where D′ and D′′ are the induced covariant derivatives in the respective Hom bundles. The
trace trFH ∧ FH contains four basic terms

trFH ∧ FH = tr(FH1 − β ∧ β∗)∧2 − tr(D′β ∧D′′β∗)− tr(D′′β∗ ∧D′β) + tr(FH2 − β∗ ∧ β)∧2

which we analyze separately.

First term: a quick computation over a trivialization shows that for End-valued forms the
trace pairing is also cyclic in the sense that tr(A∧B) = (−1)ab tr(B ∧A) where a and b are the
degrees of A and B. Noticing that (β ∧ β∗)∧2 vanishes as it involves a 4-form over P1 coming
from the η factor, we have

tr(FH1 − β ∧ β∗)2 = tr(FH1 ∧ FH1)− tr(FH1 ∧ (β ∧ β∗))− tr((β ∧ β∗) ∧ FH1) + tr���
��(β ∧ β∗)2

= tr(FH1 ∧ FH1)− tr(FH1 ∧ (β ∧ β∗))− (−1)4 tr(FH1 ∧ (β ∧ β∗))
= tr(FH1 ∧ FH1)− 2 tr(FH1 ∧ (β ∧ β∗)).

We can specifically choose the scale of η to satisfy η ∧ η∗ = iσ
4
ωP1 In that case,

β ∧ β∗ = +
i

4
p∗(φ ◦ φ∗)⊗ q∗σωP1 ,

β∗ ∧ β = − i
4
p∗(φ∗ ◦ φ)⊗ q∗σωP1).

Thus FH1 ∧ (β ∧ β∗) = i
4
p∗Fh1(φ ◦ φ∗)⊗ q∗σωP1 and the first term is expressed as:

tr(FH1 − β ∧ β∗)∧2 = p∗ tr(Fh1 ∧ Fh1)−
i

2
p∗ tr(Fh1 ◦ φ ◦ φ∗)⊗ q∗(σωP1).

Second and third terms: denoting by ∂1,2 and ∂2,1 the corresponding Chern connections
induced by h1, h2 in the vector bundles Hom(E1, E2) and Hom(E2, E1) over X we obtain

− tr(D′β ∧D′′β∗)− tr(D′′β∗ ∧D′β) =− p∗ tr(∂2,1φ ∧ ∂1,2φ
∗)⊗ q∗(η ∧ η∗)

− p∗ tr(∂1,2φ
∗ ∧ ∂2,1φ)⊗ q∗(η∗ ∧ η)

=− 2p∗ tr(∂2,1φ ∧ ∂1,2φ
∗)⊗

(
iσ

4
ωP1

)
=− i

2
p∗ tr(∂2,1φ ∧ ∂1,2φ

∗)⊗ q∗σωP1 ,
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by using that η∧η∗ = iσ
4
ωP1 . The first equality follows from the fact that D′β = D′(p∗φ⊗q∗η) =

p∗(∂2,1φ) ⊗ η + p∗φ ⊗ ����
�q∗(∂1,0

h′2
η) and D′′β∗ = p∗(∂1,2φ

∗) ⊗ q∗η∗ + p∗φ∗ ⊗ ����
��q∗(∂0,1

h′2
η∗), due to

∂1,0
h′2
η = ∂0,1

h′2
η∗ = 0 which is easy to show in explicit homogenous coordinates.

Forth term: an easy computation from the explicit formula for h′2 yields the decomposition
FH2 = p∗Fh2 − 4πiq∗ωP1 which in turn implies

FH2 ∧ FH2 = p∗(Fh2 ∧ Fh2)− 4πip∗Fh2 ∧ q∗ωP1 − 4πiq∗ωP1 ∧ p∗Fh2 − 16π2
((((

(((q∗ωP1 ∧ q∗ωP1 ,

and using tr(q∗ωP1 ∧ p∗Fh2) = (−1)4 tr(p∗Fh2 ∧ q∗ωP1) = p∗ tr(Fh2) ∧ q∗ωP1 we get:

tr(FH2 − β∗ ∧ β)2 = tr(FH2 ∧ FH2)− 2 tr(FH2 ∧ (β∗ ∧ β)) + tr(���
���(β∗ ∧ β)∧2)

= p∗ tr(Fh2 ∧ Fh2)− 8πip∗ tr(Fh2) ∧ q∗ωP1 − 2 tr [(p∗Fh2 − 4iq∗ωP1) ∧ (β∗ ∧ β)]

= p∗ tr(Fh2 ∧ Fh2)− 8πip∗ tr(Fh2) ∧ q∗ωP1 − 2 tr(p∗Fh2 ∧ (β∗ ∧ β)).

Now p∗Fh2 ∧ (β∗ ∧ β) = − i
4
p∗(Fh2 ◦ (φ∗ ◦ φ))⊗ q∗σωP1 and the fourth term is given by

tr(FH2 − β∗ ∧ β)∧2 =p∗ tr(Fh2 ∧ Fh2)−
8πi

σ
p∗ trFh2 ⊗ q∗σωP1 +

i

2
p∗(Fh2 ◦ φ∗ ◦ φ)⊗ q∗σωP1 .

Collecting all terms yields the total trace

trFH ∧ FH = p∗(trFh1 ∧ Fh1 + trFh2 ∧ Fh2)−
i

2
p∗(trFh1 ◦ (φ ◦ φ∗))⊗ q∗σωP1

+
i

2
p∗ tr(Fh2 ◦ (φ∗ ◦ φ))⊗ q∗σωP1 − i

2
p∗ tr(∂2,1φ ∧ ∂1,2φ

∗)⊗ q∗σωP1 (2.5)

− 8πi

σ
p∗ trFh2 ⊗ q∗σωP1 ,

and now we set out to contract this expression with the adjoint Lefschetz operator twice. As
can be seen in [19], section 1.2, a decomposition of the form ω = ω1 + ω2 in a direct sum of
vector spaces V1 ⊕ V2 yields a decomposition of the form

Λω = Λ1 ⊗ Id + Id ⊗ Λ2,

where Λω acts on Λk(V1 ⊗ V2)∗ '
⊕

l+m=k ΛlV ∗1 ⊗ ΛmV ∗2 . In particular, we get for Ωσ =
p∗ω + q∗σωP1

ΛΩσ = Λp∗ω ⊗ Id + Id ⊗ Λq∗σωP1
= p∗Λω ⊗ Id + Id ⊗ q∗ΛσωP1

.

Applying this operator in equation (2.5) and taking into account Λq∗σωP1
(q∗σωP1) = 1 we get:

Λ2
Ωσ trFH ∧ FH =

[
Λ2
ω trFh1 ∧ Fh1 + Λ2

ω trFh2 ∧ Fh2
]
− iΛω tr(Fh1 ◦ (φ ◦ φ∗))

+ iΛω tr(Fh2 ◦ (φ∗ ◦ φ))− 16πi

σ
Λω trFh2 − iΛω tr(∂2,1φ ∧ ∂1,2φ

∗)
(2.6)

Here we omit the pullbacks with the understanding that functions previously defined over each
factor X or P1 now are defined over the entire X × P1. With the trace term computed we
can now write the second of KYM equations. We note that the scalar curvature decomposes
as SΩσ = Sω + SσωP1

, and the second term is simply a constant. Taking all constants to the
left-hand side we obtain that the second of the KYM equations (1.1) is equivalent to:

C = Sω − αΛ2
ω(trFh1 ∧ Fh1 + α trFh2 ∧ Fh2)− α

16πi

σ
Λω trFh2

− αiΛω(tr(Fh1 ◦ φ ◦ φ∗)− tr(Fh2 ◦ φ∗ ◦ φ) + ∂2,1φ ∧ ∂1,2φ
∗) (2.7)
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We start now expanding the first equation in (1.1). The block decomposition of the curvature
(2.4) leads to the system

iΛΩσFH1 − iβ ∧ β∗ = λIdp∗E1 ,

iΛΩσFH2 − iβ∗ ∧ β = λIdp∗E2⊗q∗OP1 (2),

ΛΩσD
′β = 0,

ΛΩσD
′′β∗ = 0.

The first two equations can be written in terms of φ and the curvatures in the separate vector
bundles E1 and E2:

iΛωFh1 +
1

4
φ ◦ φ∗ = λIdE1 ,

iΛωFh2 −
1

4
φ∗ ◦ φ =

(
λ− 4π

σ

)
IdE2 . (2.8)

The last two equations are immediately satisfied asD′β = p∗(∂2,1φ)⊗q∗η andD′′β = p∗(∂1,2φ
∗)⊗

q∗η∗ and thus the contraction with ΛΩσ = p∗Λω + q∗ΛσωP1
vanishes due to the splitting of the

2-forms over the factors X and P1.

By integrating the trace of the first equation in KYM (1.1) it is possible to show that

λ =
2π

VolΩσ(X × P1)

degσ E

rankE
=

2π

r1 + r2

(
d1 + d2

VolωX
+

2r2

σ

)
, (2.9)

by relating the degree of the extension E with respect to Ωσ to the degrees d1, d2 of E1, E2

with respect to ω. This allows for rewriting the derived equations in terms of two constants
τ = λ/2π, τ ′ =

(
λ− 4π

σ

)
/2π which are related to σ via

σ =
2r2 VolωX

VolωX(r1 + r2)τ − (d1 + d2)
, (2.10)

and satisfying the relation

VolωX(r1τ + r2τ
′) = (d1 + d2), (2.11)

implying that h1 and h2 satisfy

iΛωFh1 +
1

4
φ ◦ φ∗ = 2πτ IdE1 ,

iΛωFh2 −
1

4
φ∗ ◦ φ = 2πτ ′IdE2 , (2.12)

which are known as the coupled vortex equations. They were introduced and extensively studied
by Garćıa-Prada in [16]. Together with the equation coupling to the Kähler metric (2.7) we
state them together and we will be referring to them as the gravitational vortex equations :

iΛωFh1 + 1
4
φ ◦ φ∗ = 2πτ IdE1 ,

iΛωFh2 − 1
4
φ∗ ◦ φ = 2πτ ′IdE2 ,

Sω − αΛ2
ω {trFh1 ∧ Fh1 + trFh2 ∧ Fh2} − α 16πi

σ
Λω trFh2

−αiΛω

{
tr(Fh1 ◦ φ ◦ φ∗)− tr(Fh2 ◦ φ∗ ◦ φ) + ∂2,1φ ∧ ∂1,2φ

∗} = C.

(2.13)

We have just proved the following.
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Proposition 2.3. Let T = (E1, E2, φ) be a holomorphic triple over a compact Kähler manifold
(X,ω) and let E be the holomorphic vector bundle over X × P1 defined by (2.2). Let σ, τ, τ ′ be
related by (2.10) and (2.11). The following are equivalent:

• E admits a SU(2)-invariant solution to the Kähler–Yang–Mills equations (1.1).

• The bundles E1 and E2 admit solutions to the gravitational vortex equations (2.13).

As noted above, these equations contain the coupled vortex equations, for which there
are already results characterizing the existence of solutions in particular situations. The next
sections will introduce additional hypothesis on the dimensionality of the base manifold and
the ranks of the vector bundles involved in order to further simplify the equations.

2.3 Equations on line bundles

We analyze the particular situation in which the vector bundles E1 and E2 in the holomorphic
triple are line bundles, temporarily denoted as L1 and L2 (rankL1 = rankL2 = 1). We still
assume that X is a Kähler manifold of arbitrary complex dimension.

The first thing to note is that End(L1) and End(L2) are trivial bundles. This is because
for line bundles L over X, tensoring with the dual gives L ⊗ L∗ = X × C, as can be seen by
multiplying the transition functions (which are one-by-one complex matrices):

g11,L · g11,L∗ = g11,L · (gt)−1
11,L = 1.

The triviality of EndLi implies that the curvatures Fh1 and Fh2 are simply 2-forms over X. In
this setting we assume that L2 is the trivial line bundle by tensoring the extension

0→ p∗L1 → E → p∗L2 ⊗ q∗OP1(2)→ 0

with p∗L∗2. This implies that φ ◦ φ∗ = φ∗ ◦ φ = |φ|2, the squared norm of φ ∈ H0(X,L) with
respect to the Hermitian metric h = h1⊗h∗2 on L = L1⊗L∗2. The gravitational vortex equations
can be thus written for line bundles as

iΛωFh1 + 1
4
|φ|2 = 2πτ

iΛωFh2 − 1
4
|φ|2 = 2πτ ′,

Sω − αΛ2
ω(Fh1 ∧ Fh1 + Fh2 ∧ Fh2)− 16πiα

σ
ΛωFh2

−αiΛω

(
Fh1|φ|2 − Fh2|φ|2 + ∂2,1φ ∧ ∂1,2φ

∗) = C.

(2.14)

These expressions can be reduced by means of a Weitzenböck-type formula

∆|φ|2 = 2iΛω

(
Fh |φ|2 + ∂2,1φ ∧ ∂1,2φ

∗) ,
and by direct substitution of ΛωFh2 from the second into the third equation to arrive at

iΛωFh1 + 1
4
|φ|2 = 2πτ,

iΛωFh2 − 1
4
|φ|2 = 2πτ ′,

Sω − αΛ2
ω(Fh1 ∧ Fh1 + Fh2 ∧ Fh2)

−α
2
(∆ + τ̃)(|φ|2 − τ̃) = C ′.

by defining τ̃ = 8π
σ

. Here C ′ = C − 2τ̃αλ, another constant. Substracting the second equation
from the first we can get an expression involving the Hermitian metric h. However, the equation
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coupling the Hermitian and Kähler metrics cannot be fully stated with respect to h alone. This
is due to the presence of the quadratic terms. Certainly

Fh ∧ Fh = Fh1 ∧ Fh1 − Fh1 ∧ Fh2 − Fh2 ∧ Fh1 + Fh2 ∧ Fh2 = Fh1 ∧ Fh1 + Fh2 ∧ Fh2 − 2Fh1 ∧ Fh2,

since Fh2 ∧ Fh1 = (−1)2·2Fh1 ∧ Fh2 , and therefore the cross term Fh1 ∧ Fh2 prevents this to be
written solely in terms of h.

2.4 Abelian gravitational vortex equations on Riemann

surfaces

Now it is possible to analyze the situation when X is a Riemann surface (dimCX = 1) and
the vector bundles involved are still line bundles L1, L2 over X. The equations will simplify
greatly. We consider again the line bundle L = L1 ⊗ L∗2.

As in the previous Section 2.3, the endomorphism bundles EndL1 and EndL2 are trivial,
and we have that φ◦φ∗ is the endomorphism of the line bundle given by scalar multiplication by
|φ|2, the squared norm of φ with respect to h, the Hermitian metric in L given by h = h1⊗ h∗2.
In this particular case the quadratic terms Fh1 ∧ Fh1 , Fh2 ∧ Fh2 vanish identically since there
are no nontrivial 4-forms over a Riemann surface. This allows to write the previously obtained
equation in terms of h alone. The Chern connection determined by (L, h) has a curvature
2-form given by Fh = Fh1 − Fh2 . The trace term trFH ∧ FH from (2.7) therefore reduces, by
defining τ̃ = 8π

σ
, to

Λ2
Ωσ trFH ∧ FH = −2iτ̃p∗ΛωFh2 − ip∗Λω(Fh|φ|2 + ∂φ ∧ ∂φ∗) = −2iτ̃ΛωFh2 −

1

2
∆|φ|2,

where we are omitting pullbacks and making use of the Weitzenböck-type equality

∆|φ|2 = 2iΛω∂∂|φ|2. = 2iΛω(|φ|2Fh + ∂φ ∧ ∂φ∗).

From equations (2.8) and τ̃ = 8π
σ

we obtain

iΛωFh1 +
1

4
|φ|2 = λ,

iΛωFh2 −
1

4
|φ|2 = λ− τ̃

2

(2.15)

By substracting these two identities and writing everything in terms of Fh we conclude that

iΛωFh +
1

2

(
|φ|2 − τ̃

)
= 0, (2.16)

which is precisely the τ̃ -vortex equation, introduced by Landau and Ginzburg [23] in the study of
superconductivity and studied by Garćıa-Prada in [15]. For the equation coupling the Hermitian
metric and the Kähler metric (2.7) we obtain by substituting ΛωFh2 from the second of (2.15)
and implementing the above remarks that

C = Sω +
α

2
∆|φ|2 + 2ατ̃

(
λ− τ̃

2
+

1

4
|φ|2
)
,

C ′ = Sω +
α

2
∆|φ|2 + 2ατ̃λ− ατ̃ 2 + α

τ̃

2
|φ|2,



22 CHAPTER 2. DIMENSIONAL REDUCTION

or regrouping constants in the right-hand side,

Sω +
α

2
(∆ + τ̃)(|φ|2 − τ̃) = C. (2.17)

Collecting (2.16) and (2.17) together yields the Abelian gravitational vortex equations:{
iΛωFh + 1

2
(|φ|2 − τ̃) = 0,

Sω + α
2
(∆ + τ̃)(|φ|2 − τ̃) = C

(2.18)

These equations have been studied in [2] and for the particular case of C = 0 they are related
to the physics of cosmic strings. The authors refer to these as the gravitating vortex equations.
Ours differ by a factor 1/2 appearing in (2.16), and it is due to the particular choice of the nor-
malization of the element η ∈ Ω0,1(P1,OP1(−2)), being in any case equivalent to the equations
presented in [2].

We have just showed that a SU(2)-equivariant solution (H,Ωσ) of the KYM equations on
X × P1 determines a solution to the Abelian gravitational vortex equations for τ̃ = 8π/σ.
The process can be reversed in the following manner. Suppose that (h, ω) is a solution to the
Abelian gravitational vortex equations, for a Riemann surface X and a line bundle L over it.
Then take a rank-two vector bundle extending p∗L by p∗OX ⊗ q∗OP1(2), the isomorphism class
of the holomorphic extension determined by φ ∈ H0(X,L). Then we propose a Kähler form
given by Ωσ = p∗ω + q∗σωP1 over the Kähler manifold X × P1 and a Hermitian metric

H = H1 ⊕H2 = p∗h1 ⊕ (p∗h2 ⊗ q∗h′2)

for Hermitian metric h1, h2 on L and OX respectively, and h′2 the SU(2)-invariant metric
on OP1(2) determined in homogenous coordinates by h′2 = dz⊗dz

(1+|z|2)2
. The Kähler–Yang–Mills

equations are translated by the above dimensional reduction process into

iΛωFh1 +
1

4
|φ|2 = λ,

iΛωFh2 −
1

4
|φ|2 = λ− τ̃

2
,

ΛΩσD
′β = 0,

ΛΩσD
′′β = 0,

Sω + α(∆ω|φ|2 + 2iτΛωFh2) = c.

The third and fourth equations are trivially satisfied as in Section 2.2. The second and fifth
are solved by a Hermitian metric h2 = ef on OX for a function f solving the Poisson equation
∆f = 1

2
|φ|2 − τ̃ + 2λ. By Hodge theory, this equation admits a solution if and only if the

righ-hand side integrates to zero over X. But integrating 1
2
|φ|2 in terms of ΛFh shows that the

vanishing of the right-hand-side is equivalent to (2.9). A quick computation shows that the first
equation is solved by the metric h1 = h⊗ h2, and this finishes the proof of the correspondence.

The existence of solutions to the Abelian gravitational vortex equations on Riemann surfaces
has been studied in [2],[4],[14]. In particular, [2] gives an existence theorem for genus g ≥ 1.
In this case, a deformation method yields a solution for small values of the coupling parameter α.

In order to describe what happens in genus g = 0, we note that via integration of the
equations (2.18) it can be shown that the constant c appearing there is topological in nature,
being given by

c =
2π(χ(X)− 2ατ̃c1(L))

VolωX
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and thus completely determined by the first Chern class of the line bundle, the genus of the
Riemann surface X and the cohomology class of the Kähler form ω. When the topological
constant c vanishes and c1(L) > 0 the only possible topology for X is that of the Riemann
sphere g = 0, and the Abelian gravitational vortex equations are equivalent to the Einstein–
Bogomol’nyi equations. These are related to the physics of cosmic strings, and the solutions to
these are called Nielsen–Olesen strings [28].

Yang proved a sufficiente condition [33,34] for the existence of Nielsen–Olesen strings on P1

in terms of the relative position of the zeros of the Higgs field φ. In [2], this condition is trans-
lated into algebraic terms, and subsequent articles [4, 14] prove that the existence of solutions
to the Einstein-Bogomol’nyi equations is completely characterized by a certain notion of GIT
stability of the divisor corresponding to (L, φ). We recall that the moduli space of effective
divisors parametrizes these pairs (L, φ), and the group SL(2,C), which are automorphisms of
P1, acts naturally on this moduli space giving rise to a Geometric Invariant Theory quotient.
In [14], Garćıa-Fernández, Pingali and Yau prove that for positive values of the constant c,
the existence of solutions to the general Abelian gravitational vortex equation with prescribed
volume in P1 is related again to GIT polystability.

2.5 Equations on Riemann surfaces

We analyze now the gravitational vortex equations when the base space is a compact Riemann
surface dimXC = 1 but the vector bundles E1 and E2 are of arbitrary rank r1 and r2 respectively.
We will obtain equations generalizing those of the previous section. The dimensionality of X
again implies that the quadratic terms Fh1 ∧ Fh1 and Fh2 ∧ Fh2 vanish identically. From the
general gravitational vortex equations (2.13) we obtain

iΛωFh1 + 1
4
φ ◦ φ∗ = 2πτ IdE1 ,

iΛωFh2 − 1
4
φ∗ ◦ φ = 2πτ ′IdE2 ,

Sω − 16πiα
σ

Λω trFh2
−αiΛω

[
tr(Fh1 ◦ φ ◦ φ∗)− tr(Fh2 ◦ φ∗ ◦ φ) + tr(∂2,1φ ∧ ∂1,2φ

∗)
]

= C.

(2.19)

The first two equations are simply the coupled vortex equations. The higher rank of the
vector bundles involved makes the third equation in (2.19) not so easy to simplify in terms of
the Laplacian operator.

The existence of solutions to the coupled vortex equations over compact Riemann surfaces
has been studied in [16] when E2 is assumed to be a line bundle, and later generalized for
arbitrary ranks in [7]. These previous results link the existence of solutions to the coupled
vortex equations to a certain notion of stability of the triple (E1, E2, φ). This turns out to be
equivalent to the stability of the extension given by (2.2). We will introduce the appropriate
notions of Geometric Invariant Theory and stability of holomorphic triples in the following
chapter. The aim is to combine what is known for the coupled vortex equations and the
existence results given for the Abelian case to formulate a conjecture regarding the existence
of solutions to (2.19) for the particular case of genus g = 0, one of the main objectives of the
present work. These are nothing but the very first steps towards a deeper understanding of the
gravitational vortex equations on general Riemann surfaces.
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Chapter 3

Holomorphic triples and stability

3.1 Stability and Hitchin–Kobayashi correspondences

In this section we recall some previous results concerning existence of solutions to the Hermitian–
Yang–Mills equations in terms of the stability of the vector bundles involved. This is of
paramount importance as the Hermitian–Yang–Mills equations (and its dimensional reductions)
are a subset of the Kähler–Yang–Mills equations (and its dimensional reductions respectively).
Throughout this section we let (X,ω) denote a compact Kähler manifold of arbitrary complex
dimension n. We recall that the degree of any vector bundle E over X with respect to the
Kähler form ω is an integer number obtained by integrating the first Chern class against the
(n− 1)th power of the Kähler form:

degω E =
1

(n− 1)!

∫
X

c1(E) ∧ ωn−1 =
i

2π

∫
X

Λω trFA
ωn

n!
, (3.1)

where A is any connection on E. Note that for Riemann surfaces the degree is independent of
the Kähler structure, and in that case we write simply degE. With this concept of degree we
can define the standard notion of stability of a vector bundle.

Definition 3.1. Let (X,ω) be a compact Kähler manifold surface and E a holomorphic bundle
over M . E is said to be stable if for every non-trivial coherent subsheaf E ′ ⊂ E

µ(E ′) < µ(E)

where µ(E ′) := degω E
′

rankE′
is called the slope of the bundle E ′ with respect to ω. If one replaces

the strict inequality by µ(E ′) ≤ µ(E) then E is said to be semistable. A vector bundle E is
said to be polystable if it is isomorphic to a direct sum of holomorphic stable bundles all with
the same slope as E.

A nice feature of Riemann surfaces is that each subsheaf E ′ of a vector bundle E, which is
a locally free coherent sheaf, is necessarily torsion-free, and there is a unique vector subbundle
E ′′ ⊂ E with rankE ′′ = rankE ′ fitting the short exact sequence

0→ E ′ → E ′′ → E ′′/E ′ → 0,

where E ′′/E ′ is a pure torsion sheaf. This implies in particular that degE ′ = degE ′′ −
degE ′′/E ′ ≤ degE ′′, and thus stability of bundles over Riemann surfaces need only be checked
with respect to holomorphic subbundles E ′′ ⊂ E. In complex dimension 2 we can also restrict
our attention to locally free coherent subsheaves E ′, even though they are not necessarily sub-
bundles of E.

25
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Stability of bundles is related to existence of solutions to the Hermitian–Yang–Mills equa-
tions via the Hitchin–Kobayashi correspondence, proved by Donaldson in the algebraic setting
[9], and by Uhlenbeck and Yau for general compact Kähler manifolds [32].

Theorem 3.2 (Donaldson–Uhlenbeck–Yau). Let E be a holomorphic bundle over a compact
Kähler manifold (X,ω). Then E admits a solution h to the Hermitian–Yang–Mills equations

iΛωFh = λIdE

if and only if E is polystable.

If we assume that X is a Riemann surface, Hermitian–Yang–Mills connections correspond
to projectively flat structures on the vector bundle E over X. Through the holonomy represen-
tation, this allows an interpretation of the above result in terms of the Narasimhan–Seshadri
theorem: irreducible projective unitary representations of the fundamental group π1(X) are in
one-to-one correspondence with stable holomorphic bundles over X.

A similar notion of stability is defined in the case of G-equivariant vector bundles, which is
relevant for the study of dimensional reductions. In this context, a vector bundle E is said to
be G-invariantly stable if

µ(E ′) < µ(E)

for every G-equivariant subsheaf E ′ ⊂ E. Similarly one defines G-invariant semistability and
polystability. This notion of G-invariant stability has proven useful to characterize the existence
of solutions to several equations obtained by dimensional reduction from the Hermitian–Yang–
Mills equations, obtaining new versions of the Hitchin–Kobayashi correspondence.

Two main results (Theorems 4 and 5 in [15]) established a G-invariant Hitchin–Kobayashi
correspondence as follows.

Theorem 3.3. Let E be a G-equivariant holomorphic vector bundle over a compact Kähler
manifold (X,ω). If E has a G-invariant Hermitian–Yang–Mills metric h then (E, h) =

⊕
i(Ei, hi)

where Ei is G-invariantly stable having a G-invariant Hermitian–Yang–Mills metric hi and
µ(Ei) = µ(E).

Theorem 3.4. Let E be a G-equivariant holomorphic vector bundle over a compact Riemann
surface. If E is G-invariantly stable, then it supports a G-invariant Hermitian–Yang–Mills
metric.

3.2 Holomorphic triples and coupled vortices

We now consider a compact Riemann surface X. A holomorphic triple T = (E1, E2, φ) consists
of two holomorphic vector bundles over X and a holomorphic map between them φ : E2 → E1.
The tuple (r1, r2, d1, d2) = (rankE1, rankE2, degE1 degE2) is oftern referred to as the type of
the triple. We now define the notion of σ-stability of a triple.

Definition 3.5. Let T = (E1, E2, φ) be holomorphic triple. A subtriple T ′ = (E ′1, E
′
2, φ
′) is a set

of coherent subsheaves E ′i ⊂ Ei and a sheaf map φ′ making the following diagram commutative.

E ′2 E ′1

E2 E1

φ′

i i

φ
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The subtriple T ′ is said to trivial if T ′ = (0, 0, 0) or T ′ = T . The σ-degree and σ-slope are
defined by

degσ(T ′) := deg(E ′1 ⊕ E ′2) + r′2σ,

µσ(T ′) :=
degσ T

′

r′1 + r′2
.

The triple is then said to be σ-stable if µσ(T ′) < µσ(T ) for every non-trivial subtriple. The
analogous concept of σ-semistability is defined by replacing the previous strict inequality by
a weak one.

Again it suffices to check the inequalities for vector subbundles, since saturated subsheaves
(those with torsionless quotient sheaf) in Riemann surfaces are precisely vector subbundles.
For any holomorphic triple T = (E1, E2, φ) there is a dual triple given by T ∗ = (E∗2 , E

∗
1 , φ

∗)
induced by the isomorphism

Hom(E2, E1) ' Hom(E∗1 , E
∗
2),

and moreover, a straightforward computation shows that the σ-stability of T is equivalent to
the σ-stability of its dual triple T ∗. Another relevant concept is that of quotient triple. Consider
a subtriple T ′ = (E1, E2, φ) of type (r′1, r

′
2, d
′
1, d
′
2) of T = (E1, E2, φ). Then we can construct

the quotient triple defined as T ′′ = (E1/E
′
1, E2/E

′
2, φq), where the quotient bundles fit the short

exact sequence

0→ E ′i → Ei → Ei/E
′′
i → 0,

and therefore give rise to a commutative diagram of triples

0 E ′2 E2 E2/E
′
2 0

0 E ′1 E1 E1/E
′
1 0.

φ′ φ φq

Proposition 3.6. Let T ′ be a subtriple of T as above. If T is σ-stable then

µσ(T ′) < µσ(T ) < µσ(T ′′)

where T ′′ is the quotient triple induced by T ′. If T is σ-semistable, the analogous weak inequality
holds.

Proof. By exactness of the sequence 0 → E ′i → Ei → Ei/E
′′
i → 0, we have that d′′i = di − d′i

and r′′i = ri − r′i, where di, d
′
i, d
′′
i , ri, r

′
i, r
′′
i stand for the degrees and ranks of Ei, E

′
i, E

′′
i = Ei/E

′
i

respectively. Therefore,

µσ(T ′′) =
d′′1 + d′′2 + r′′2σ

r′′1 + r′′2
=

d1 + d2 + σr2

r1 + r2 − r′1 − r′2
− d′1 + d′2 + r′2
r1 + r2 − r′1 − r′2

= µσ(T )
r1 + r2

r1 + r2 − r′1 − r′2
− µσ(T ′)

r′1 + r′2
r1 + r2 − r′1 − r′2

> µσ(T ) > µσ(T ′),

where we have used that µσ(T ) > µσ(T ′).

When τ and σ are related by (2.10) we speak of σ- and τ -stability of triples indistinctly.
Polystability is defined in terms of the parameter τ .
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Definition 3.7. The triple T = (E1, E2, φ) is said to be reducible if there are direct sum
decompositions E1 =

⊕k
i=1 E1i, E2 =

⊕k
i=1E2i and φ =

⊕k
i=1 φi such that φi ∈ Hom(E2i, E1i),

and we write T =
⊕k

i=1 Ti for Ti = (E1i, E2i, φ). A reducible triple is said to be τ -polystable
if the following holds, for the value of σ given by (2.10) and τ ′ related to τ by (2.11):

1. Each φi is non-trivial unless E1i = 0 or E2i = 0.

2. if φi 6= 0 then Ti is σ-stable.

3. if E1i = 0 then E2i is a stable bundle of slope τ ′,

4. if E2i = 0 then E1i is a stable bundle of slope τ .

The main result in [7] relates (poly)-stability of triples to SU(2)-invariant (poly)-stability.

Theorem 3.8 (Theorems 4.1 and 4.7 in [7]). Let T = (E1, E2, φ) be a holomorphic triple over
a compact Riemann surface, and let E be the holomorphic extension (2.2) over X ×P1 induced
by T . Then:

1. If E1 and E2 are not isomorphic, then T is σ-stable if and only if E is stable with respect
to Ωσ.

2. If E1 ' E2 ' F , then T is σ-stable if and only if E decomposes as a direct sum

E = (p∗F ⊗OP1(1))⊕ (p∗F ⊗OP1(1))

and (p∗F ⊗OP1(1)) is stable with respect to Ωσ.

3. T is a τ -polystable triple if and only if E is SU(2)-invariantly polystable with respect to
Ωσ.

These results together with the invariant version of the Hitchin–Kobayashi correspondence
give the basic existence result of the coupled vortex equations.

Theorem 3.9 (Theorem 5.1 in [7]). Let T = (E1, E2, φ) be a holomorphic triple over a compact
Riemann surface. Then the following are equivalent.

1. The bundles support Hermitian metrics h1, h2 solving the coupled vortex equations (2.12).

2. The triple T is τ -polystable.

Due to the role of stable triples in the study of solutions to the coupled vortex equations
it is natural to wonder about the moduli space of these stable triples under the following
equivalence relation. Consider two triples T = (E1, E2, φ), T ′ = (E ′1, E

′
2, φ
′). T and T ′ are said

to be isomorphic if there exist isomorphisms of bundles u : E1 → E ′1 and v : E2 → E ′2 such
that φ′ ◦ v = u ◦ φ. Let M(t) be the set of equivalence classes of holomorphic triples of type
t = (r1, r2, d1, d2), and letMτ (t) ⊂M(t) be the subset of equivalence classes of τ -stable triples
of the same type. This moduli space has the structure of an algebraic variety as is shown in
[7].

Theorem 3.10 (Theorem 6.1 in [7]). Let X be a compact Riemann surface of genus g. The
moduli space of τ -stable triples of type (r1, r2, d1, d2) is a complex analytic space with a natural
Kähler structure outside of the singularities, with dimension at a smooth point given by

1 + r2d1 − r1d2 + (r2
1 + r2

2 − r1r2)(g − 1), (3.2)
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and it is non-empty if and only if τ lies in the interval I = (d1/r1, µM), where

µM =
d1

r1

+
r2

|r1 − r2|

(
d1

r1

− d2

r2

)
if r1 6= r2 and µM = ∞ if r1 = r2. Moreover Mτ (t) is a quasi-projective varity and projective
if r1 + r2 and d1 + d2 are coprime and τ is generic.

The set of critical values for τ for the last condition to fail is a finite set contained within
the interval I.

3.3 Geometric Invariant Theory

We make a brief pause to introduce basic concepts of Geometric Invariant Theory which will
allow us to formulate a conjecture regarding the existence of solutions to the gravitational vor-
tex equations in terms of an action on the moduli space of stable triples. We cite Mumford’s
book [26] as a basic source. Consider a quasi-projective variety M and a reductive group G
acting on it. Consider a G-equivariant line bundle L over M, i.e. a lift of the action which is
fiberwise linear.

Consider the space of sections H0(X,L⊗k) for any k ≥ 0, and the subspace of G-invariant
sections H0(M, L⊗k)G. A point p ∈ M is said to be GIT semistable if there exists some
k ≥ 0 and some G-invariant section f ∈ H0(M, L⊗k)G such that:

1. f(p) 6= 0

2. The open subset Mf = {q ∈M : f(q) 6= 0} is affine.

A semistable point is said to be GIT stable if furthermore the action of G on Mf is closed
and the stabilizer of G at x is finite. Dropping the last hypothesis yields the notion of GIT
polystable points. We denote byMs andMss the set of stable and semistable points respec-
tively. The GIT quotient is defined as

M �G := Proj

(⊕
k≥0

H0(M, L⊗k)

)
,

and there is a surjective G-invariant rational map π : Mss → M � G. Furthermore, when
restricted to stable points, this map is a geometric quotient, meaning that the image of Ms

under π, Ms �G := π(Ms), coincides with the quotient under the group action

Xs �G = Xs/G.

3.4 Automorphisms of Riemann surfaces and moduli space

of triples

We now return to holomorphic triples over Riemann surfaces. Consider the automorphism
group Aut(X) of a Riemann surface. We define an action of Aut(X) on the set of holomorphic
triples by pullback: if T = (E1, E2, φ) is a holomorphic triple then

g · T := (g∗E1, g
∗E2, g

∗φ),

where we recall that the pullback of the bundle is given by g∗Ei = {(x, ei) ∈ X × Ei : g · x =
π(ei)} and that the pullback map is g∗φ(x, e2) := (x, φ(e2)).
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Proposition 3.11. The action of the automorphism group preserves equivalence classes of
triples and τ -stability.

Proof. The first assertion follows from the functorial properties of the pullback. If T ′ and T
are equivalent triples then there are isomorphisms u, v making the first diagram commute, and
from this follows the commutativity of the second.

E2 E1

E ′2 E ′1

φ

φ′

u v =⇒
g∗E2 g∗E1

g∗E ′2 g∗E ′1.

g∗φ

g∗φ′

g∗u g∗v

The degree of the pullback under g of the bundle is the degree of the original bundle times the
degree (as a map) of g. Since g ∈ Aut(X), it is an orientation-preserving diffeomorphism and
therefore has degree 1. Therefore deg(g∗Ei) = deg(Ei). Since the pullback preserves rank, this
implies that µσ(T ′) = µσ(g∗T ′). The second assertion follows from this and the fact that there
is a one-to-one correspondence between subtriples of T and subtriples of the pullback triple
g∗T .

The above proposition implies that the automorphism group of a Riemann surface acts in
the moduli space of stable holomorphic triples in a well defined way. Let us now consider
the case of the projective line P1. We recall that P1 ' SL(2,C)/P where P is the parabolic
subgroup of upper triangular matrices. Therefore the Lie group SL(2,C) acts naturally on
P1 by biholomorphisms, which is to say that there is an injection SL(2,C) ↪→ Aut(X). Since
we know that the moduli space of stable triples over a Riemann surface is a quasi-projective
variety we are in position to consider GIT stability and GIT quotients for this SL(2,C) action.

Inspired by the previous existence results for the Abelian gravitational vortex equations we
state the following conjecture regarding the general gravitational vortex equations on P1.

Conjecture 3.12. Let P1 be the projective line and T = (E1, E2, φ) a holomorphic triple over
P1 of type t = (n1, n2, d1, d2). Let σ, τ, τ ′ be related as in (2.10),(2.11). The following are
equivalent.

1. There exists a solution to the gravitational vortex equations (2.19) on (P1, T ).

2. The triple T is τ -polystable and its equivalence class is furthermore GIT-polystable for the
action of SL(2,C) on Mτ (t).

The motivation behind this conjecture lies at the identification of (isomorphism classes of)
line bundles with effective divisors over P1. Previous results [2,4,14] characterize the existence
of Abelian gravitational vortices on (P1, L) for a line bundle in terms of stability under a GIT-
action of SL(2,C), and it seems possible that this characterization holds for higher ranks and
the corresponding equations.

3.5 Stable triples over P1

In this section we outline some previous descriptions of the moduli spaces of stable triples over
P1 as a first approach towards understanding the solutions to the gravitational vortex equations.
One of the main advantages to working with P1 is the following theorem:
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Theorem 3.13 (Grothendick, [17]). Let E be a holomorphic vector bundle of rank r over P1.
Then there exists n1, . . . , nr ∈ Z such that

E ' O(n1)⊕ · · · ⊕ O(nr).

Here O(d) denotes the line bundle over P1 of degree d.

We start by analyzing holomorphic triples of line bundles and build up from these.

Proposition 3.14. Let T = (L1, L2, φ) be a holomorphic triple of type (1, 1, d1, d2). If φ 6= 0
then T is σ-stable if and only if σ > d1− d2 > 0. If φ = 0 then T is not σ-stable for any σ and
it is semistable if and only if σ = d1 − d2.

Proof. There are ony two candidates to non-trivial subtriples, namely T ′ = (L1, 0, 0) and T ′′ =
(0, L2, 0). T ′ is indeed a subtriple which can be checked immediately. However, T ′′ does not
give rise to a commutative diagram unless φ = 0. Let σ ∈ R. We will check what precise
conditions need to be met for the triple (L1, L2, φ) to be σ-stable. Calculating σ-slopes yields:

µσ(T ) =
deg(L1 ⊕ L2) + 1 · σ

2
=
d1 + d2 + σ

2
,

µσ(T ′) =
deg(L1 ⊕ 0) + 0 · σ

1
= d1,

µσ(T ′′) =
deg(0⊕ L2) + 1 · σ

1
= d2 + σ.

If φ 6= 0, the only stability condition is µσ(T ′) < µσ(T ), or simply

d1 − d2 < σ.

In the case when φ ≡ 0, then we get a contradiction

d1 − d2 < σ < d1 − d2,

from which we conclude that (E1, E2, 0) is not a stable triple, and (E1, E2, φ) is a σ-stable
triple if and only if σ > d1 − d2 (for φ 6= 0). Note that in order for φ not to be trivial it is
necessary that d1−d2 > 0 as Hom(L2, L1) ' O(d1−d2) has no nontrivial global sections unless
d1−d2 > 0. We can study semistability by weakinging the inequalities. In this case, (E1, E2, 0)
is a σ-semistable triple if and only if σ = d1 − d2.

The moduli space of σ-stable triples of type (1, 1, d1, d2) has been characterized in [31],
yielding a projective space.

Proposition 3.15 (Corollary 3.2.1 in [31]). Let Ms
σ be the moduli space of stable holomorphic

triples of type (1, 1, d1, d2) with d1 ≥ d2. Then for σ > d1 − d2,

Ms
σ ' Symd1−d2(P1) = Pd1−d2 .

The above expression of the moduli space of stable triples of type (1, 1, d1, d2) hints at the
action of SL(2,C). Recall that SL(2,C) acts naturally on P1, and therefore an action on the
symmetric product is available

g · (p1 � · · · � pd1−d2) := (g · p1)� · · · � (g · pd1−d2).

Also note that the d-fold symmetric product of P1 is in one-to-one correspondence with the set
of degree d effective divisors on P1, an interpretation that ties the relationship between stable
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holomorphic triples and the Abelian gravitational vortex equations.

Let us now turn to higher ranks. Consider triples of the form (L1, E2, φ), where L1 is a line
bundle and E2 is a rank-two vector bundle. By the classification of holomorphic bundles over
P1 we have to study all possible holomorphic maps

O(a)⊕O(b)
φ→ O(c)

for integers a, b, c. The problem of classifying stable holomorphic triples with ranks r1 =
1, r2 = 2 has been partially undertaken in [31], but only for specific degrees, namely d1 = 0 (i.e.
L1 = O) and degE2 = −s. Let us restrict then to holomorphic triples of the form

T : O(−d)⊕O(−e) φ→ O,

with d + e = s and let us assume without loss of generality e ≥ d. We can show that T can
only be stable if s > 1.

Proposition 3.16. If T is σ-stable, then d > 0. In particular s = d+ e ≥ 2d > 1.

Proof. By contradiction. Assume d < 0 Then T ′ = (0,O(−d), 0) is a subtriple of T . However,
it is also a quotient triple induced by the subtriple (O,O(−e), φ|O(−e)). Therefore by σ-stability
of T we get that simultaneously µσ(T ′) < µσ(T ) and µσ(T ′) > µσ(T ), a contradiction.

Assume now that d = 0. The triple is then given by T = (O,O ⊕O(−s), φ). Consider the
case in which φ(O) = 0. Then T ′′ = (0,O, 0) is both a subtriple and a quotient triple (induced
by the subtriple (O,O(−s), φ|O(−s))), and we get another contradiction. If φ(O) 6= 0, then φ
is surjective and kerφ = O(−s), and the subtriple (O,O, φ|O) is a quotient triple induced by
(0,O(−s), 0), leading again to a contradiction with the stability of T .

Therefore the analysis is restricted to holomorphic triples of type (1, 2, 0,−s) for s > 1.
The interval for σ for triples of this type to be σ-stable is bounded and given by the following
result, which also specifies the finite number of points where stability fails.

Proposition 3.17 (Lemma 4.1.1 and Proposition 4.1.3 in [31]). Let T = (O,O(−d)⊕O(−e), φ)
be a holomorphic triple of type (1, 2, 0,−s), with 0 < d ≤ e. If T is σ-stable, then

σ ∈ (σ0, 2s),

where σ0 = s
2

for s even and σ0 = s+3
2

for s odd. Furthermore, the subintervals in which the
stability conditions is independent of σ are given by the decomposition

(σ0, 2s) = (σ0, σ0 + 3) t (σ0 + 3, σ0 + 6) t · · · t (2s− 6, 2s− 3) t (2s− 3, 2s).

For the extremal (leftmost and rightmost) subintervals, the moduli space of σ-stable triples
of type (1, 2, 0,−s) has been precisely computed. We recall these results in the following
proposition.

Proposition 3.18. If σ ∈ (2s−3, 2s), the moduli space of holomorphic triples of type (1, 2, 0,−s)
is given by

Ms
σ(1, 2, 0− s) ' Ps−2.

If s is even and σ ∈ (α0, α0 + 3), the moduli space is given by

Ms
σ(1, 2, 0,−s) ' Gr

(
2,
s

2
+ 1
)
.
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3.6 Further research

Explicit descriptions of the moduli spaces of holomorphic triples will play an important role in
the study of our proposed Conjecture 3.12. A possible course of action can be outlined: firstly,
it seems important to describe further moduli spaces of stable triples for arbitrary ranks and
degrees. Secondly, and supported on previous descriptions, a explicit construction of the action
of SL(2,C) on this moduli space is prerequisite to studying GIT stability on this space.

Based on the nature of previous results we expect that one direction of the conjecture will be
easier to prove, namely that the existence of a solution to the gravitational vortex equations im-
plies the GIT polystability of the holomorphic triple; the converse will probably be much harder.

Another possible research direction could be to consider the Kähler–Yang–Mills–Higgs equa-
tions. Introduced by Álvarez-Cónsul and Garćıa-Prada in [3], these equations generalize the
KYM equations by allowing the Higgs field φ to vary. Several techniques have been developed
and explicit obstructions in the style of Futaki invariants have been constructed. It is promis-
ing to consider these obstructions to find negative answers on the existence of solutions to the
gravitational vortex equations on general Riemann surfaces. The authors in [3] also consider
general dimensional reductions through the action of semisimple complex Lie groups KC and
parabolic subgroups P ⊂ KC, and they prove a correspondence between K-invariant solutions
to the KYM equations and some type of vortex equations over quiver bundles, which consist
of a collection of vector bundles and morphisms between them. In the particular case of the
SU(2)-invariant KYM equations, the authors obtain a necessary condition for the existence
of solutions involving the degrees of the vector bundles and the number of zeros of the Higgs
field.
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